niworkflows.viz.utils module¶
Helper tools for visualization purposes.
- niworkflows.viz.utils.compose_view(bg_svgs, fg_svgs, ref=0, out_file='report.svg')[source]¶
Compose the input svgs into one standalone svg with CSS flickering animation.
- niworkflows.viz.utils.cuts_from_bbox(mask_nii, cuts=3)[source]¶
Find equi-spaced cuts for presenting images.
- niworkflows.viz.utils.extract_svg(display_object, dpi=300, compress='auto')[source]¶
Remove the preamble of the svg files generated with nilearn.
- niworkflows.viz.utils.plot_melodic_components(melodic_dir, in_file, tr=None, out_file='melodic_reportlet.svg', compress='auto', report_mask=None, noise_components_file=None)[source]¶
Plots the spatiotemporal components extracted by FSL MELODIC from functional MRI data.
- Parameters:
melodic_dir (str) – Path pointing to the outputs of MELODIC
in_file (str) – Path pointing to the reference fMRI dataset. This file will be used to extract the TR value, if the
trargument is not set. This file will be used to calculate a mask ifreport_maskis not provided.tr (float) – Repetition time in seconds
out_file (str) – Path where the resulting SVG file will be stored
compress (
'auto'or bool) – Whether SVG should be compressed. If'auto', compression will be executed if dependencies are installed (SVGO)report_mask (str) – Path to a brain mask corresponding to
in_filenoise_components_file (str) – A CSV file listing the indexes of components classified as noise by some manual or automated (e.g. ICA-AROMA) procedure. If a
noise_components_fileis provided, then components will be plotted with red/green colors (correspondingly to whether they are in the file -noise components, red-, or not -signal, green-). When all or none of the components are in the file, a warning is printed at the top.
- niworkflows.viz.utils.plot_registration(anat_nii, div_id, plot_params=None, order=('z', 'x', 'y'), cuts=None, estimate_brightness=False, label=None, contour=None, compress='auto', dismiss_affine=False)[source]¶
Plots the foreground and background views Default order is: axial, coronal, sagittal
- niworkflows.viz.utils.plot_segs(image_nii, seg_niis, out_file, bbox_nii=None, masked=False, colors=None, compress='auto', **plot_params)[source]¶
Generate a static mosaic with ROIs represented by their delimiting contour.
Plot segmentation as contours over the image (e.g. anatomical). seg_niis should be a list of files. mask_nii helps determine the cut coordinates. plot_params will be passed on to nilearn plot_* functions. If seg_niis is a list of size one, it behaves as if it was plotting the mask.
- niworkflows.viz.utils.robust_set_limits(data, plot_params, percentiles=(15, 99.8))[source]¶
Set (vmax, vmin) based on percentiles of the data.
- niworkflows.viz.utils.svg2str(display_object, dpi=300)[source]¶
Serialize a nilearn display object to string.