smriprep.workflows.outputs module
Writing outputs.
- smriprep.workflows.outputs.init_anat_reports_wf(*, spaces, freesurfer, output_dir, sloppy=False, name='anat_reports_wf')[source]
- Set up a battery of datasinks to store reports in the right location. - Parameters:
- Inputs:
- source_file – Input T1w image 
- std_t1w – T1w image resampled to standard space 
- std_mask – Mask of skull-stripped template 
- subject_dir – FreeSurfer SUBJECTS_DIR 
- subject_id – FreeSurfer subject ID 
- t1w_conform_report – Conformation report 
- t1w_preproc – The T1w reference map, which is calculated as the average of bias-corrected and preprocessed T1w images, defining the anatomical space. 
- t1w_dseg – Segmentation in T1w space 
- t1w_mask – Brain (binary) mask estimated by brain extraction. 
- template – Template space and specifications 
 
 
- smriprep.workflows.outputs.init_ds_anat_volumes_wf(*, bids_root: str, output_dir: str, name='ds_anat_volumes_wf', tpm_labels=('GM', 'WM', 'CSF')) Workflow[source]
- smriprep.workflows.outputs.init_ds_dseg_wf(*, output_dir: str, extra_entities: dict | None = None, name: str = 'ds_dseg_wf')[source]
- Save discrete segmentations - Parameters:
- Inputs:
- source_files – List of input anatomical images 
- anat_dseg – Segmentation in anatomical space 
 
- Outputs:
- anat_dseg – The location in the output directory of the discrete segmentation 
 
- smriprep.workflows.outputs.init_ds_fs_registration_wf(*, output_dir: str, image_type: Literal['T1w', 'T2w'], name: str = 'ds_fs_registration_wf')[source]
- Save rigid registration between subject anatomical template and either FreeSurfer T1.mgz or T2.mgz - Parameters:
- Inputs:
- source_files – List of input anatomical images 
- fsnative2anat_xfm – LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1/T2 
 
- Outputs:
- anat2fsnative_xfm – LTA-style affine matrix translating from T1/T2 to FreeSurfer-conformed subject space 
- fsnative2anat_xfm – LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w 
 
 
- smriprep.workflows.outputs.init_ds_fs_segs_wf(*, bids_root: str, output_dir: str, extra_entities: dict | None = None, name='ds_fs_segs_wf')[source]
- Set up a battery of datasinks to store derivatives in the right location. - Parameters:
- Inputs:
- anat_fs_aparc – FreeSurfer’s aparc+aseg segmentation, in native anatomical space 
- anat_fs_aseg – FreeSurfer’s aseg segmentation, in native anatomical space 
- source_files – List of input anatomical images 
 
 
- smriprep.workflows.outputs.init_ds_grayord_metrics_wf(*, bids_root: str, output_dir: str, metrics: list[str], cifti_output: Literal['91k', '170k'], name='ds_grayord_metrics_wf') LiterateWorkflow[source]
- Save CIFTI-2 surface metrics - Parameters:
- Inputs:
- source_files – List of input T1w images 
- ``<metric>`` – CIFTI-2 scalar file for each metric passed to - metrics
- ``<metric>_metadata`` – JSON file containing metadata for each metric passed to - metrics
 
- Outputs:
- ``<metric>`` – CIFTI-2 scalar file in - output_dirfor each metric passed to- metrics
 
- smriprep.workflows.outputs.init_ds_mask_wf(*, bids_root: str, output_dir: str, mask_type: Literal['brain', 'roi', 'ribbon'], extra_entities: dict | None = None, name='ds_mask_wf')[source]
- Save the subject brain mask - Parameters:
- Inputs:
- source_files – List of input anat images 
- mask_file – Mask to save 
 
- Outputs:
- mask_file – The location in the output directory of the mask 
 
- smriprep.workflows.outputs.init_ds_surface_masks_wf(*, output_dir: str, mask_type: Literal['cortex', 'roi', 'ribbon', 'brain'], entities: dict[str, str] | None = None, name='ds_surface_masks_wf') LiterateWorkflow[source]
- Save GIFTI surface masks. - Parameters:
- Inputs:
- source_files (list of lists of str) – List of lists of source files. Left hemisphere sources first, then right hemisphere sources. 
- mask_files (list of str) – List of input mask files. Left hemisphere mask first, then right hemisphere mask. 
 
- Outputs:
- mask_files (list of str) – List of output mask files. Left hemisphere mask first, then right hemisphere mask. 
 
- smriprep.workflows.outputs.init_ds_surface_metrics_wf(*, bids_root: str, output_dir: str, metrics: list[str], name='ds_surface_metrics_wf') LiterateWorkflow[source]
- Save GIFTI surface metrics - Parameters:
- Inputs:
- source_files – List of input T1w images 
- ``<metric>`` – Left and right GIFTIs for each metric passed to - metrics
 
- Outputs:
- ``<metric>`` – Left and right GIFTIs in - output_dirfor each metric passed to- metrics
 
- smriprep.workflows.outputs.init_ds_surfaces_wf(*, output_dir: str, surfaces: list[str], entities: dict[str, str] | None = None, name='ds_surfaces_wf') LiterateWorkflow[source]
- Save GIFTI surfaces - Parameters:
- Inputs:
- source_files – List of input anatomical images 
- ``<surface>`` – Left and right GIFTIs for each surface passed to - surfaces
 
- Outputs:
- ``<surface>`` – Left and right GIFTIs in - output_dirfor each surface passed to- surfaces
 
- smriprep.workflows.outputs.init_ds_template_registration_wf(*, output_dir: str, image_type: Literal['T1w', 'T2w'], name: str = 'ds_template_registration_wf')[source]
- Save template registration transforms - Parameters:
- Inputs:
- template – Template space and specifications 
- source_files – List of input anatomical images 
- anat2std_xfm – Nonlinear spatial transform to resample imaging data given in anatomical space into standard space. 
- std2anat_xfm – Inverse transform of - anat2std_xfm
 
 
- smriprep.workflows.outputs.init_ds_template_wf(*, num_anat: int, output_dir: str, image_type: Literal['T1w', 'T2w'], name: str = 'ds_template_wf')[source]
- Save the subject-specific template - Parameters:
- Inputs:
- source_files – List of input anatomical images 
- anat_ref_xfms – List of affine transforms to realign input anatomical images 
- anat_preproc – The anatomical reference map, which is calculated as the average of bias-corrected and preprocessed anatomical images, defining the anatomical space. 
 
- Outputs:
- anat_preproc – The location in the output directory of the preprocessed anatomical image 
 
- smriprep.workflows.outputs.init_ds_tpms_wf(*, output_dir: str, extra_entities: dict | None = None, name: str = 'ds_tpms_wf', tpm_labels: tuple = ('GM', 'WM', 'CSF'))[source]
- Save tissue probability maps - Parameters:
- Inputs:
- source_files – List of input anatomical images 
- anat_tpms – Tissue probability maps in anatomical space 
 
- Outputs:
- anat_tpms – The location in the output directory of the tissue probability maps 
 
- smriprep.workflows.outputs.init_template_iterator_wf(*, spaces: SpatialReferences, sloppy: bool = False, name='template_iterator_wf')[source]
- Prepare the necessary components to resample an image to a template space - This produces a workflow with an unjoined iterable named “spacesource”. - It takes as input a collated list of template specifiers and transforms to that space. - The fields in outputnode can be used as if they come from a single template.