nifreeze.viz.bland_altman module¶
Bland-Altman plot.
- class nifreeze.viz.bland_altman.BASalientEntityColor(self, *args, **kwds)[source]¶
Bases:
Enum
- LEFT_COLOR = 'left_color'¶
- RELIABLE_COLOR = 'reliable_color'¶
- RIGHT_COLOR = 'right_color'¶
- nifreeze.viz.bland_altman.plot_bland_altman(data1: ndarray, data2: ndarray, ci: float = 0.95, salient_data: dict | None = None, figsize: tuple | None = (15, 10)) matplotlib.pyplot.Figure [source]¶
Create a Bland-Altman plot.
Create a Bland-Altman plot [Bland86] and highlight
size
lower and upper extremes along the X coordinates.- Parameters:
data1 (
numpy.ndarray
) – Data values.data2 (
numpy.ndarray
) – Data values.ci (
float
, optional) – Confidence interval value. Must be in the [0, 1] range.salient_data (
dict
, optional) – Salient data values. Must be in the same format asdata1
. Contains: - - - …figsize (
tuple
, optional) – Figure size.
- Returns:
fig – Matplotlib figure.
- Return type:
matplotlib.pyplot.Figure
References
[Bland86]J. Martin Bland and Douglas G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement, The Lancet 327(8476) (1986) 307-310