smriprep.workflows.fit.registration module
Spatial normalization workflows.
- smriprep.workflows.fit.registration.init_register_template_wf(*, sloppy: bool, omp_nthreads: int, templates: list[str], image_type: str = 'T1w', name='register_template_wf')[source]
- Build an individual spatial normalization workflow using - antsRegistration.- Workflow Graph
  - (Source code, png, svg, pdf) 
 - Important - This workflow defines an iterable input over the input parameter - templates, so Nipype will produce one copy of the downstream workflows which connect- poutputnode.templateor- poutputnode.template_specto their inputs (- poutputnodestands for parametric output node). Nipype refers to this expansion of the graph as parameterized execution. If a joint list of values is required (and thus cutting off parameterization), please use the equivalent outputs of- outputnode(which joins all the parameterized execution paths).- Parameters:
- sloppy ( - bool) – Apply sloppy arguments to speed up processing. Use with caution, registration processes will be very inaccurate.
- omp_nthreads ( - int) – Maximum number of threads an individual process may use.
- templates ( - listof- str) – List of standard space fullnames (e.g.,- MNI152NLin6Asymor- MNIPediatricAsym:cohort-4) which are targets for spatial normalization.
 
- Inputs:
- moving_image – The input image that will be normalized to standard space. 
- lesion_mask – (optional) A mask to exclude regions from the cost-function input domain to enable standardization of lesioned brains. 
- template – Template name and specification 
- image_type – Moving image modality 
 
- Outputs:
- anat2std_xfm – The T1w-to-template transform. 
- std2anat_xfm – The template-to-T1w transform. 
- template – Template name extracted from the input parameter - template, for further use in downstream nodes.
- template_spec – Template specifications extracted from the input parameter - template, for further use in downstream nodes.