niworkflows.interfaces.utility module¶
Interfaces under evaluation before upstreaming to nipype.interfaces.utility.
- class niworkflows.interfaces.utility.AddTSVHeader(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Add a header row to a TSV file
Examples
An example TSV:
>>> np.savetxt('data.tsv', np.arange(30).reshape((6, 5)), delimiter='\t')
Add headers:
>>> addheader = AddTSVHeader() >>> addheader.inputs.in_file = 'data.tsv' >>> addheader.inputs.columns = ['a', 'b', 'c', 'd', 'e'] >>> res = addheader.run() >>> df = pd.read_csv(res.outputs.out_file, delim_whitespace=True, ... index_col=None) >>> df.columns.ravel().tolist() ['a', 'b', 'c', 'd', 'e']
>>> np.all(df.values == np.arange(30).reshape((6, 5))) True
- Mandatory Inputs:
columns (a list of items which are a string) – Header for columns.
in_file (a pathlike object or string representing an existing file) – Input file.
- Outputs:
out_file (a pathlike object or string representing an existing file) – Output average file.
- class niworkflows.interfaces.utility.DictMerge(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Merge (ordered) dictionaries.
- Optional Inputs:
in_dicts (a list of items which are a dictionary with keys which are any value and with values which are any value or an OrderedDict or None) – Dictionaries to be merged. In the event of a collision, values from dictionaries later in the list receive precedence.
- Outputs:
out_dict (a dictionary with keys which are any value and with values which are any value) – Merged dictionary.
- class niworkflows.interfaces.utility.JoinTSVColumns(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Add a header row to a TSV file
Examples
An example TSV:
>>> data = np.arange(30).reshape((6, 5)) >>> np.savetxt('data.tsv', data[:, :3], delimiter='\t') >>> np.savetxt('add.tsv', data[:, 3:], delimiter='\t')
Join without naming headers:
>>> join = JoinTSVColumns() >>> join.inputs.in_file = 'data.tsv' >>> join.inputs.join_file = 'add.tsv' >>> res = join.run() >>> df = pd.read_csv(res.outputs.out_file, delim_whitespace=True, ... index_col=None, dtype=float, header=None) >>> df.columns.ravel().tolist() == list(range(5)) True
>>> np.all(df.values.astype(int) == data) True
Adding column names:
>>> join = JoinTSVColumns() >>> join.inputs.in_file = 'data.tsv' >>> join.inputs.join_file = 'add.tsv' >>> join.inputs.columns = ['a', 'b', 'c', 'd', 'e'] >>> res = join.run() >>> res.outputs.out_file '...data_joined.tsv' >>> df = pd.read_csv(res.outputs.out_file, delim_whitespace=True, ... index_col=None) >>> df.columns.ravel().tolist() ['a', 'b', 'c', 'd', 'e']
>>> np.all(df.values == np.arange(30).reshape((6, 5))) True
>>> join = JoinTSVColumns() >>> join.inputs.in_file = 'data.tsv' >>> join.inputs.join_file = 'add.tsv' >>> join.inputs.side = 'left' >>> join.inputs.columns = ['a', 'b', 'c', 'd', 'e'] >>> res = join.run() >>> df = pd.read_csv(res.outputs.out_file, delim_whitespace=True, ... index_col=None) >>> df.columns.ravel().tolist() ['a', 'b', 'c', 'd', 'e']
>>> np.all(df.values == np.hstack((data[:, 3:], data[:, :3]))) True
- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – Input file.
join_file (a pathlike object or string representing an existing file) – File to be adjoined.
- Optional Inputs:
columns (a list of items which are a string) – Header for columns.
side (‘right’ or ‘left’) – Where to join. (Nipype default value:
right
)
- Outputs:
out_file (a pathlike object or string representing an existing file) – Output TSV file.
- class niworkflows.interfaces.utility.KeySelect(keys=None, fields=None, **inputs)[source]¶
Bases:
BaseInterface
An interface that operates similarly to an OrderedDict.
>>> ks = KeySelect(keys=['MNI152NLin6Asym', 'MNI152Lin', 'fsaverage'], ... fields=['field1', 'field2', 'field3']) >>> ks.inputs.field1 = ['fsl', 'mni', 'freesurfer'] >>> ks.inputs.field2 = ['volume', 'volume', 'surface'] >>> ks.inputs.field3 = [True, False, False] >>> ks.inputs.key = 'MNI152Lin' >>> ks.run().outputs field1 = mni field2 = volume field3 = False key = MNI152Lin
>>> ks = KeySelect(fields=['field1', 'field2', 'field3']) >>> ks.inputs.keys=['MNI152NLin6Asym', 'MNI152Lin', 'fsaverage'] >>> ks.inputs.field1 = ['fsl', 'mni', 'freesurfer'] >>> ks.inputs.field2 = ['volume', 'volume', 'surface'] >>> ks.inputs.field3 = [True, False, False] >>> ks.inputs.key = 'MNI152Lin' >>> ks.run().outputs field1 = mni field2 = volume field3 = False key = MNI152Lin
>>> ks.inputs.field1 = ['fsl', 'mni', 'freesurfer'] >>> ks.inputs.field2 = ['volume', 'volume', 'surface'] >>> ks.inputs.field3 = [True, False, False] >>> ks.inputs.key = 'fsaverage' >>> ks.run().outputs field1 = freesurfer field2 = surface field3 = False key = fsaverage
>>> ks.inputs.field1 = ['fsl', 'mni', 'freesurfer'] >>> ks.inputs.field2 = ['volume', 'volume', 'surface'] >>> ks.inputs.field3 = [True, False] Traceback (most recent call last): ValueError: Trying to set an invalid value
>>> ks.inputs.key = 'MNINLin2009cAsym' Traceback (most recent call last): ValueError: Selected key "MNINLin2009cAsym" not found in the index
>>> ks = KeySelect(fields=['field1', 'field2', 'field3']) >>> ks.inputs.keys=['MNI152NLin6Asym'] >>> ks.inputs.field1 = ['fsl'] >>> ks.inputs.field2 = ['volume'] >>> ks.inputs.field3 = [True] >>> ks.inputs.key = 'MNI152NLin6Asym' >>> ks.run().outputs field1 = fsl field2 = volume field3 = True key = MNI152NLin6Asym
- Mandatory Inputs:
key (a string) – Selective key.
keys (a list of items which are a string) – Index of keys.
- Outputs:
key (a string) – Propagates selected key.
- input_spec¶
alias of
_KeySelectInputSpec
- output_spec¶
alias of
_KeySelectOutputSpec
- class niworkflows.interfaces.utility.TSV2JSON(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Convert metadata from TSV format to JSON format.
- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – Input TSV file.
index_column (a string) – Name of the column in the TSV to be used as the top-level key in the JSON. All remaining columns will be assigned as nested keys.
- Optional Inputs:
additional_metadata (a dictionary with keys which are any value and with values which are any value or an OrderedDict or None or None) – Any additional metadata that should be applied to all entries in the JSON. (Nipype default value:
None
)drop_columns (a list of items which are any value or None) – List of columns in the TSV to be dropped from the JSON. (Nipype default value:
None
)enforce_case (a boolean) – Enforce snake case for top-level keys and camel case for nested keys. (Nipype default value:
True
)output (a pathlike object or string representing a file or None) – Path where the output file is to be saved. If this is None, then a JSON-compatible dictionary is returned instead.
- Outputs:
output (a dictionary with keys which are any value and with values which are any value or a pathlike object or string representing an existing file or an OrderedDict or None) – Output dictionary or JSON file.